Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms.

Authors

Yagi, T

Publication Year 1987
Journal Biochemistry
Chapter
Pages 2822-2828
Volume 26
Issue 10
Issn
Isbn
PMID 3111526.0
PMCID
DOI 10.1021/bi00384a025
URL http://dx.doi.org/10.1021/bi00384a025

The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and Bacillus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [14C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [14C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity.