Ivey, D M; Ljungdahl, L G
Publication Year | 1986 |
Journal | Journal of Bacteriology |
Chapter | |
Pages | 252-257 |
Volume | 165 |
Issue | 1 |
Issn | |
Isbn | |
PMID | 2867087.0 |
PMCID | PMC214397 |
DOI | 10.1128/jb.165.1.252-257.1986 |
URL | http://dx.doi.org/10.1128/jb.165.1.252-257.1986 |
The F1 portion of the H+-ATPase from Clostridium thermoaceticum was purified to homogeneity by solubilization at low ionic strength, ion-exchange chromatography, and gel filtration. The last indicated the Mr to be 370,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the pure enzyme revealed four bands with Mr corresponding to 60,000, 55,000, 37,000, and 17,000 in an apparent molar ratio of 3:3:1:1. The purified enzyme would bind to stripped membranes to reconstitute dicyclohexylcarbodiimide-sensitive ATPase activity. Phosphohydrolase activity, measured at 58 degrees C, was optimal at pH 8.5. In the presence of a 1 mM excess of Mg2+ over the concentration of ATP, the Km for ATP was 0.4 mM, and the Vmax was 6.7 mumol min-1 mg-1. Unlike the membrane-bound F1F0 complex, the F1-ATPase was relatively insensitive to the inhibitors dicyclohexylcarbodiimide and tributyltin chloride. Both the complex and the F1-ATPase were inhibited by quercetin, azide, 7-chloro-4-nitro-benz-2-oxa-1,3-diazole, and free magnesium, and both were stimulated by primary alcohols and sulfite. In whole cells, the F1F0-ATPase catalyzed the synthesis of ATP in response to a pH gradient.