Cunningham, C C; George, D T
Publication Year | 1975 |
Journal | The Journal of Biological Chemistry |
Chapter | |
Pages | 2036-2044 |
Volume | 250 |
Issue | 6 |
Issn | |
Isbn | |
PMID | 123247.0 |
PMCID | |
DOI | |
URL | https://www.ncbi.nlm.nih.gov/pubmed/123247 |
The lipid-free particulate preparations of the mitochondrial ATPase require phospholipid for activity and can be inhibited by oligomycin, as has been demonstrated previously. In this communication a steady state analysis of the activation of a particulate preparation of the ATPase by phospholipids and its subsequent inhibition by oligomycin has been carried out. The relative affinity of the ATPase for purified phospholipids has been determined by measuring the Km for activation (Ka) for several phospholipids. The Ka values varied from 30 to 100 mum. The Vmax in the presence of phosphatides varies from 0.29 to 1.11 mumol ATP hydrolyzed/min/mg of protein; no correlation is noted between the relative affinity of the enzyme for a phospholipid and the V max value. Higher V max values are noted with the more acidic phospholipids, however. Sodium dodecyl sulfate and monoolein also activate with Ka values of 25 and 800 mum, respectively. Diglycerides, however, do not activate. With all lipids the ATPase activity stimulated is oligomycin-sensitive. The Ki values for oligomycin range from 0.1 to 0.6 mum. Oligomycin is a competitive inhibitor with respect to all the phospholipids tested except phosphatidylethanolamine and phosphatidyglycerol. It is also competitive with respect to sodium dodecyl sulfate (k-i equals 0.94 mum). In reciprocal plots of activity versus ATP concentration, with and without oligomycin, an intercept consistent with either mixed or partial noncompetitive inhibition kinetics is noted. Comparable K-i values for oligomycin are obtained when calculated assuming either mixed or partial noncompetitive inhibition. The Km for ATP is the same in the unactivated and the lipid activated particulate ATPase; the value obtained is slightly lower than the Km for ATP in the solubilized, purified ATPase. Using a spectrophotometric assay the time required for activation with phospholipid and inhibition with oligomycin has also been determined. This investigation suggests the possibility that activation of the ATPase is due a position to interact with the water-soluble substrate. Consistent with the above suggestion is the supposition that the lipids do not necessarily confer inhibitor sensitivity to the ATPase, but rather allow an oligomycin-sensitive activity to be expressed.