A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190.

Authors

Montero, Mayte; Lobaton, Carmen D; Moreno, Alfredo; Alvarez, Javier

Publication Year 2002
Journal The FASEB Journal
Chapter
Pages 1955-1957
Volume 16
Issue 14
Issn
Isbn
PMID 12368236.0
PMCID
DOI 10.1096/fj.02-0553fje
URL http://dx.doi.org/10.1096/fj.02-0553fje

It is widely acknowledged that mitochondrial Ca2+ uptake modulates the cytosolic [Ca2+] ([Ca2+]c) acting as a transient Ca2+ buffer. In addition, mitochondrial [Ca2+] ([Ca2+]M) regulates the rate of respiration and may trigger opening of the permeability transition pore and start apoptosis. However, no mechanism for the physiological regulation of mitochondrial Ca2+ uptake has been described. We show here that SB202190, an inhibitor of p38 mitogen-activated protein (MAP) kinase, strongly stimulates ruthenium red-sensitive mitochondrial Ca2+ uptake, both in intact and in permeabilized HeLa cells. The [Ca2+]M peak induced by agonists was increased about fourfold in the presence of the inhibitor, with a concomitant reduction in the [Ca2+]c peak. The stimulation occurred fast and was rapidly reversible. In addition, experiments in permeabilized cells perfused with controlled [Ca2+] showed that SB202190 stimulated mitochondrial Ca2+ uptake by more than 10-fold, but only in the physiological [Ca2+]c range (1-4 mM). Other structurally related p38 MAP kinase inhibitors (SB203580, PD169316, or SB220025) produced little or no effect. Our data suggest that in HeLa cells, a protein kinase sensitive to SB202190 tonically inhibits the mitochondrial Ca2+ uniporter. This novel regulatory mechanism may be of paramount importance to modulate mitochondrial Ca2+ uptake under different physiopathological conditions.